If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-8x-144=0
a = 5; b = -8; c = -144;
Δ = b2-4ac
Δ = -82-4·5·(-144)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{46}}{2*5}=\frac{8-8\sqrt{46}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{46}}{2*5}=\frac{8+8\sqrt{46}}{10} $
| 2.20=10x+53.90 | | 8+7b=50 | | 3g-28+12g=1-g | | 8x+32x-5=8(5x+8) | | b/6+3=7 | | .05+.25(24-x)=1.6 | | 50(x+10)(x+20)=180 | | x4−31x2+150=0 | | -2+k/3=-5 | | 5n+3=-27 | | 10b-255-3b=4b-1 | | 10=53.90x-2.20 | | b/2+14=25 | | X+1/9x=90 | | 2r+4=14r+1 | | -189=4x-3(-4x+15) | | 3b+3=2b+12 | | 4.3x+7.9+2.7=9.4 | | 10=7+n-n/2 | | 3/5(40-35x)=-60 | | 8x+12=5x–6. | | -7x+2=-16 | | |x-5|=15 | | 8x+12=5x–6 | | F(x)=5/6x+10 | | 12m-9=10m+5 | | 3(2t×7.5-1)=42 | | 4x+31x-8=7(5x+5) | | x+3/7=10/7 | | 5x+1-3x=-15 | | 1/2n+16=2/3n-4 | | −0.4=3g−0.9 |